
Group Shift Pointwise Convolution
for Volumetric Medical Image

Segmentation

Junjun He1,2,3,4, Jin Ye3,4, Cheng Li5, Diping Song3,4, Wanli Chen6,
Shanshan Wang5,7,8, Lixu Gu1,2, and Yu Qiao3,4(B)

1 School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
2 Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China

3 Shenzhen Key Lab of Computer Vision and Pattern Recognition,
SIAT-SenseTime Joint Lab, Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, Shenzhen, Guangdong, China
yu.qiao@siat.ac.cn

4 Shanghai AI Lab, Shanghai, China
5 Paul C. Lauterbur Research Center for Biomedical Imaging,

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, Guangdong, China

6 The Chinese University of Hong Kong, Hong Kong, China
7 Peng Cheng Laboratory, Shenzhen, Guangdong, China

8 Pazhou Lab, Guangzhou, Guangdong, China

Abstract. Recent studies have witnessed the effectiveness of 3D convo-
lutions on segmenting volumetric medical images. Compared with the 2D
counterparts, 3D convolutions can capture the spatial context in three
dimensions. Nevertheless, models employing 3D convolutions introduce
more trainable parameters and are more computationally complex, which
may lead easily to model overfitting especially for medical applications
with limited available training data. This paper aims to improve the
effectiveness and efficiency of 3D convolutions by introducing a novel
Group Shift Pointwise Convolution (GSP-Conv). GSP-Conv simplifies
3D convolutions into pointwise ones with 1 × 1 × 1 kernels, which dra-
matically reduces the number of model parameters and FLOPs (e.g. 27×
fewer than 3D convolutions with 3× 3× 3 kernels). Näıve pointwise con-
volutions with limited receptive fields cannot make full use of the spatial
image context. To address this problem, we propose a parameter-free
operation, Group Shift (GS), which shifts the feature maps along differ-
ent spatial directions in an elegant way. With GS, pointwise convolutions
can access features from different spatial locations, and the limited recep-
tive fields of pointwise convolutions can be compensated. We evaluate the
proposed method on two datasets, PROMISE12 and BraTS18. Results
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show that our method, with substantially decreased model complexity,
achieves comparable or even better performance than models employing
3D convolutions.

Keywords: Vomumetric medical image segmentation · Pointwise
convolution · Group shift

1 Introduction

Semantic segmentation, which is essential for various applications, is a chal-
lenging task in medical imaging. Accurate volumetric medical image segmenta-
tion can not only quantitatively assess the volumes of interest (VOIs), but also
contribute to the precise disease diagnosis, computer-aided interventions, and
surgical planning [9,19]. Manually annotating volumetric medical images (with
hundreds of slices and complicate structures) is tedious, time-consuming, and
error-prone. Thus, automatic volumetric medical image segmentation methods
are highly desired.

Two-dimensional fully convolutional neural network (2D FCN)-based meth-
ods have been widely adopted for medical image segmentation [16,21]. However,
medical images are commonly in 3D with rich spatial information. Meanwhile,
large variations exist in structural appearance, size, and shape among patients.
Thus, exploiting 3D structural and anatomical information is critical for accu-
rate volumetric medical image segmentation. Recent works extended 2D FCNs to
3D FCNs by directly adding an operation in the extra dimension [3,4,6,13,15].
Although satisfactory performances were obtained, the parameters and floating-
point-operations (FLOPs) increased extremely compared with the 2D counter-
parts. As a result, increased demands for large training datasets and advanced
computational resources arise.

To reduce model parameters and FLOPs and at the same time, maintain
the segmentation performance, convolutional kernel factorization-based meth-
ods have been extensively investigated for Deep Convolutional Neural Networks
(DCNNs) [5,17,18,20,22]. In the earliest DCNNs, filters with large kernels were
designed to enlarge the receptive field (RF) and make full use of the spatial
context [10]. Later studies found that by decomposing a large filter into several
consecutive small filters, the same RF could be obtained and superior perfor-
mance with fewer parameters and FLOPs could be achieved [17,18]. For exam-
ple, a 7 × 7 filter can be decomposed into three 3 × 3 filters. Decomposing a
high dimensional filter into several low dimensional filters along the different
dimensions is another method of convolutional kernel factorization. Depthwise
Separable Convolutions (DSCs) decompose filters along the spatial and chan-
nel dimensions [5]. DSCs treat pointwise convolutions (1 × 1 for 2D networks
and 1 × 1 × 1 for 3D networks) as the endpoint of convolution factorization.
Pointwise convolutions are the most efficient convolutions in DCNNs with the
fewest parameters and FLOPs. Nonetheless, the severely limited RF of pointwise
convolutions makes it difficult to construct a working neural network with pure
pointwise convolutions.
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Fig. 1. The proposed Group Shift (GS) operation. GS consists of two steps, grouping
and shift. (a) Spatial grouping refers to the operation of grouping features in the three
spatial dimensions. (b) Channel grouping represents the operation of grouping features
in the channel dimension. (c) Shift is the operation of shifting the grouped features
according to the spatial group and channel group indexes.

In this paper, we attempt to build a novel DCNN for volumetric medical
image segmentation by answering the following question: Can we replace all the
convolutions in DCNNs with pointwise convolutions while keeping the segmen-
tation performance? To achieve the objective, we need to solve the following
problems of FCNs with only stacked pointwise convolutions: (1) The receptive
field never enlarges. (2) The 3D spatial image context cannot be utilized. (3)
Long-term dependencies in images are not exploited. To address these issues,
we propose Group Shift (GS), a parameter-free operation. Equipped with GS,
our final model with only pointwise convolutions (pointwise FCNs) can achieve
comparable or even better performances than the corresponding 3D FCNs with
significantly reduced parameters and FLOPs.

2 Method

The major innovation of our proposed method lies in the design of GS. GS
is developed to compensate for the limited RF of pointwise convolutions in a
parameter-free manner and construct long-term regional dependencies. GS con-
sists of two key steps, grouping and shift. In this section, we will describe the
two steps as well as the formulation of GS in detail.
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2.1 Grouping

Spatial Grouping. Given the input and output feature maps of GS as FFF ∈
R

D×H×W×C and FFF s ∈ R
D×H×W×C . D, H, and W are the three spatial dimen-

sions. C is the number of channels. We first divide the images equally into gd, gh,
and gw groups along the three spatial dimensions as shown in Fig. 1a, resulting in
gd×gh×gw image groups in total. The dimension of each spatial group is d×h×w,
and we have D = d × gd,H = h × gh,W = w × gw. So after spatial grouping,
the input feature maps are transformed to FFF sg ∈ R

(d×gd)×(h×gh)×(w×gw)×C .

Channel Grouping. Empirically, we want to shift only a part of the features.
The un-shifted features contain the original localization information that is also
important for the final segmentation performance. Supposing the number of
channels to be shifted is Cs and the number of channels to keep un-shifted
is Ck, and C = Cs + Ck. Then, we split Cs into gd × gh × gw groups (same
as the spatial groups). Each channel group contains Cg channels, and Cs =
gd × gh × gw × Cg. After channel grouping, the output feature map is FFF cg ∈
R

D×H×W×(Cg×gd×gh×gw+Ck). Channel grouping is illustrated in Fig. 1b.
Therefore, the input feature maps FFF ∈ R

D×H×W×C are transformed to
FFF scg ∈ R

(d×gd)×(h×gh)×(w×gw)×(Cg×gd×gh×gw+Ck) after spatial and channel
grouping. FFF scg can proceed to the subsequent shift operation.

2.2 Shift

To force the pointwise convolutions into extracting more spatial information,
we elaborately design a shift operation. Figure 1c is an example to illustrate
how the shift operation works. We assume that the feature maps are divided
into four spatial groups (gd × gh × gw = 4) (corresponding to the four columns
with different colors) and rearrange the spatial groups in a column-wise manner
(Fig. 1c, left figure). The channels C are divided into shift channels Cs and un-
shift channels Ck. The shift channels Cs are further grouped into four groups
(corresponding to the upper four rows in Fig. 1c). Then, we shift each channel
group in Cs with a step equals to the index of the channel group (Fig. 1c, right
figure). Shifting one step means that moving one spatial group in the specific
channel group to the neighbor spatial group. All the channel groups shift in
the same direction and shifting happens only within the specific channel group
without channel shifting.

From Fig. 1c, we can observe that after shifting, every spatial group (i.e.
every column) contains one channel group of all the other spatial groups. In
other words, one voxel in a specific location in a spatial group contains one
group of channels of the corresponding voxel with the same location in all the
other spatial groups. Thus, the elaborately designed shift operation can not only
increase the RF but also make full advantage of the spatial context, especially
long-term dependence. Ideally, it can effectively solve the raised three problems.
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2.3 Formulation of Group Shift

Let {x′, y′, z′, c′} be the coordinates of a specific voxel in the shifted feature map
FFF s ∈ R

D×H×W×C and {x, y, z, c} be the corresponding coordinates of the same
voxel in the input feature map FFF ∈ R

D×H×W×C . Specifically, we should find:

FFF s(x′, y′, z′, c′) = FFF (x, y, z, c) (1)

where x, x′ ∈ [0,D− 1], y, y′ ∈ [0,H − 1], z, z′ ∈ [0,W − 1], and c, c′ ∈ [0, C − 1].
The spatial groups along three dimensions are gd, gh, and gw. The spatial size
of each spatial group is d × h × w, and D = d × gd,H = h × gh,W = w × gw.
The number of channels to be shifted is Cs. Suppose the current spatial group
index of {x, y, z, c} in the input feature map is cur ind, shift step is sft step,
and the shifted spatial group index of {x′, y′, z′, c′} in the shifted feature map is
sfted ind. The relationships of the coordinates between the shifted feature map
and input feature map are defined as follows:

cur ind = �x
d

� + �y
h

� × gd + � z
w

� × gd × gh (2)

sft step = � c

cg
� (3)

sfted ind = mod(cur ind + sft step, gd × gh × gw) (4)

{
x′ = mod(sfted ind, gd) × d + mod(x, d) c ∈ [0, Cs),
x′ = x c ∈ [Cs, C). (5)

{
y′ = �mod(sfted ind,gd×gh)

gd
� × h + mod(y, h) c ∈ [0, Cs),

y′ = y c ∈ [Cs, C).
(6)

{
z′ = � sfted ind

gd×gh
� × w + mod(z, w) c ∈ [0, Cs),

z′ = z c ∈ [Cs, C).
(7)

c′ = c (8)

3 Experiments

Extensive experiments are conducted on two benchmark datasets, PROMISE12
[11] and BraTS18 [1,2,12]. PROMISE12 released 50 transversal T2-weighted
MR images of the prostate and corresponding segmentation ground truths as
the training set and 30 MR images without ground truths as the validation set.
The input size of this dataset is set to 128× 128× 16 through random cropping.
BraTS18 provides multimodal MR scans (T1, T1ce, T2, and FLAIR) for brain
tumor segmentation. In the training set, there are 285 images with segmentation
labels. All provided volumes have the same matrix size of 240 × 240 × 155. The
input size of BraTS18 is set to 128 × 128 × 64 through random cropping.
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Fig. 2. The basic “Conv Block” in the tiny 3D U-Net and four insert positions of Group
Shift. One “Conv Block” contains two convolutional operations. “UpShift” means add
Group Shift after “Upsampling”.

Table 1. Results of the two baselines, pointwise FCN without GS and 3D FCN with
3 × 3 × 3 convolutions, on the two datasets.

Baselines BraTS18 PROMISE12

WT TC ET mDice (%) mDice (%)

Pointwise FCN without GS 86.4 79.7 72.7 79.6 65.5

3D FCN 89.0 78.7 73.7 80.5 87.3

The network architecture of the 3D FCN adopted in this study is a tiny
3D U-Net [6] (See supplementary material for the detailed structure). When all
convolutions in the network are replaced by pointwise convolutions, the 3D FCN
becomes our pointwise FCN. The proposed GS can be inserted to any position of
the pointwise FCN. In this paper, we investigate four GS-related configurations,
“CSC”, “CCS”, “CSCS”, and “CSCSUpShift” as shown in Fig. 2. The numbers
of spatial and channel groups of GS are determined by the size of the input
feature maps.

Two baselines are investigated, 3D FCNs with 3 × 3 × 3 convolutions and
pointwise FCNs without GS. We randomly split the two datasets into two groups
with a ratio of 8:2 for network training and validation. For preprocessing, we
normalize each 3D image independently with the mean and standard deviation
calculated from the corresponding foreground regions. The poly learning rate
policy is adopted with an initial learning rate of 0.01 and a power of 0.9. The
optimizer utilized is stochastic gradient descent (SGD), and the loss function is
Dice loss [13]. All our models are implemented with PyTorch on a Titan XP
GPU (12G) with a batch size of 4. Two evaluation metrics, “dice” and “mDice”,
are reported. Here, “dice” is the Dice score calculated for each foreground class,
and “mDice” is the average “dice” of all foreground classes.

3.1 Results on PROMISE12

Results of the two baselines on PROMISE12 are shown in Table 1. As expected,
when all 3×3×3 convolutions in 3D FCNs are replaced with pointwise convolu-
tions, the network performance drops dramatically. The mDice value is decreased
by more than 20%. This reflects that large effective RFs and long-term depen-
dencies in images are important for large foreground object segmentation, such
as the prostate.
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Table 2. Results of different spatial groups (SG) and different GS positions (IP) on
PROMISE12. Stages 1–5 indicate network stages. GS positions refer to Fig. 2. Cs =
Ck = 1

2
C. For SG setting of (n1, n2, n3), n1, n2, and n3 are group numbers in depth,

height, and width directions, respectively. Results are characterized by mDice (%).

Different SG settings Results under different SG and IP

SG Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 CSC CCS CSCS CSCSUpShift

ProSGv1 (2, 2, 2) (2, 2, 2) (2, 4, 4) (1, 8, 8) (1, 8, 8) 84.9 84.0 83.1 83.0

ProSGv2 (1, 2, 2) (1, 4, 4) (2, 4, 4) (1, 8, 8) (1, 8, 8) 84.5 85.4 85.2 84.5

ProSGv3 (2, 2, 2) (1, 4, 4) (1, 4, 4) (1, 8, 8) (1, 8, 8) 85.6 84.3 84.8 83.6

ProSGv4 (1, 2, 2) (2, 2, 2) (2, 4, 4) (1, 8, 8) (1, 8, 8) 85.0 84.3 85.3 84.6

Considering the matrix sizes of the input images and the feature maps at
different network stages, four settings of spatial groups (ProSGv1 to ProSGv4
in Table 2) are investigated. Specifically, we test different spatial group numbers
at different stages. Basically, more spatial groups at deeper stages and more
spatial groups in the in-plane dimensions are utilized. Together with the four
GS configurations (“CSC”, “CCS”, “CSCS”, and “CSCSUpShift”), there are 16
experimental conditions in total.

Overall, the segmentation results of pointwise FCNs adding GS (Table 2) are
better than that without GS (65.5% in Table 1) with a large margin. Among the
four spatial group settings, “ProSGv2” achieves the best average results (84.9%)
under the four GS configurations. Among the four GS configurations, “CSC”
achieves the best average results (85.0%) under the four spatial group settings.
Nevertheless, “ProSGv3” with “CSC” achieves the best result with a mDice
value of 85.6%, which is only slightly worse than that obtained with normal 3D
FCNs (87.3%) utilizing computational intensive 3D convolutions.

With the best configuration of our pointwise FCN (“ProSGv3” with “CSC”),
we further investigate the influence of the ratio of the shifted channels on the
network performance. When all the input feature channels are allowed to shift
(Cs = C and Ck = 0), the segmentation results (mDice = 81.4%) are much
worse than that obtained when we only shift half of the input features (mDice
= 85.6%). Therefore, we conclude that both local (preserved by the un-shifted
channel groups) and spatial information (extracted through the shifted channel
groups) are important for the final prostate segmentation.

3.2 Results on BraTS18

Surprisingly, for the two baselines, the results of pointwise FCNs (mDice =
79.6%) are only slightly worse than those of 3D FCNs (mDice = 80.5%) on
BraTS18 as shown in Table 1, which is quite different from the results achieved on
PROMISE12. We suspect that this phenomenon is caused by the different prop-
erties of the two datasets. The target objects of BraTS18 data (brain tumors)
are much smaller than those of PROMISE12 data (prostate regions). The local
information within the limited RF of pointwise FCNs is enough to achieve sat-
isfactory segmentation results on BraTS18.
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Table 3. Results on the BraTS18 test set obtained through the official online evaluation
server. “CSC” is one of the insert positions of group shift (GS) as shown in Fig. 2. “Dec”
means adding GS to the decoder of the network only. Cs = Ck = 1

2
C. ET, WT, and

TC refer to enhancing tumor, whole tumor, and tumor core.

Model Params(M) FLOPs Dice (%) Hausdorff95

ET WT TC ET WT TC

CSC+Dec (Ours) 0.25 7.91 78.1 90.2 83.2 4.01 5.22 6.53

S3D-UNet [4] 3.32 75.20 74.93 89.35 83.09 – – –

3D-ESPNet [15] 3.63 76.51 73.70 88.30 81.40 – – –

Kao et al. [8] 9.45 203.96 78.75 90.47 81.35 3.81 4.32 7.56

No New-Net [7] 10.36 202.25 81.01 90.83 85.44 2.41 4.27 6.52

NVDLMED [14] 40.06 1495.53 81.73 90.68 86.02 3.82 4.52 6.85

We investigate the influence of insert positions of GS on the final performance
with BraTS18 data when utilizing a spatial group setting of (Stage 1–5: spatial
groups of (2, 2, 2), (2, 2, 2), (2, 2, 2), (4, 4, 4), and (5, 5, 5)) (See supplementary
material). A similar conclusion can be drawn that “CSC” achieves the best aver-
age result (mDice = 81.2%) among the four GS configurations (80.7%, 80.1%,
and 80.2% for CCS, CSCS, and CSCSUpShift), which is even slightly better
than that given by the 3D FCN (80.5%). This indicates the effectiveness of our
pointwise FCNs with GS (GSP-Conv) for small object segmentation tasks.

With this dataset, we treat the encoder and the decoder of the network
differently and add the GS operations to one of them at a time. Results reflect
that adding GS to the decoder (82.6%) is more effective for the brain tumor
segmentation task than adding GS to the encoder (81.5%) or to both (81.2%).
We speculate that when adding GS only to the decoder, we can keep more local
detailed information un-shifted, which is essential for small object segmentation.

Comparisons to state-of-the-art methods [4,7,8,14,15], including factor-
ization-based methods [4,15], are performed on the test set of BraTS18 through
the online server (Table 3). Following the best practices, we use the same data
preprocessing, training strategies, and training hyper-parameters as [7]. Overall,
our method achieves competitive results when compared to these methods with
much fewer parameters and FLOPs. With less than 8% parameters and less than
11% FLOPs, our methods can still generate very accurate brain tumor segmen-
tation, which is crucial for acute situations when fast diagnoses are important.

4 Conclusion

Two major limitations exist with our current experimental design. First, we only
experimented with the tiny 3D U-Net architecture. Second, our model contains
a number of hyper-parameters that might need to be tuned for different applica-
tions. Therefore, we believe that we have not made the most of the capability of
the proposed GS operation. In our following work, we will investigate the effects
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of the data (imaging modality, spacing, volume size, and target object size) on
the choice of the best model configurations. We will also try to design dedicated
network architecture according to these properties of the data. Particularly, the
number of stages, the number of channels in each stage, the number of convolu-
tion operations in each “Conv Block” (Fig. 2), and the number of “Conv Block”
in both the encoder and the decoder will be accordingly optimized. Adding
the different settings of the proposed GS operation, all these factors will build a
large search space. We are considering introducing the neural architecture search
(NAS) method to automate the process.

Nevertheless, equipped with the current version of our proposed GS, the
pointwise FCNs can already achieve comparable or even better performance
than the corresponding 3D FCNs. To the best of our knowledge, this is the
first attempt to segment volumetric images with only pointwise convolutions.
We provide a new perspective on model compression. Our proposed GSP-Conv
operation can be of high application value when fast and accurate imaging diag-
noses are needed. In addition, we believe that the proposed method can be easily
extended to other image processing tasks, including image classification, object
detection, image synthesis, and image super-resolution.
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